Signal Slots Qt Example

Posted : admin On 3/27/2022
  • PyQt Tutorial
  • PyQt Useful Resources
  • Selected Reading

Use a Property, Signal or Slot? As we’ve already seen in the previous examples, properties, signals and slots offer different types of communication between C and QML: Slots allow communication from QML to C: Slots are used to trigger C code from QML. You can use parameters and return values to pass data to and from C.


For our signal and slot example, we will handle two types of widgets such as LineEdit and Label. Under the input widgets, choose “QLineEdit” and drag and drop to the Dialog form. In the same way, click a Qlabel from the Display widgets drag and drop to the Dialog form. Step 3 - Handling signal and slot. You cannot emit a signal to a specifc slot, but keep in mind that slots are ordinary methods which can be called through a signal, but don't have to. So instead of sending a signal to a slot just call the slot directly. Further properties of signal/slots. Qt provides the QObject::sender function, which returns a pointer to the object that sent the signal Note: if the slot was not activated by a signal, the return is undefined. Signals and slots are loosely coupled: A class which emits a signal neither knows nor cares which slots receive the signal.

Unlike a console mode application, which is executed in a sequential manner, a GUI based application is event driven. Functions or methods are executed in response to user’s actions like clicking on a button, selecting an item from a collection or a mouse click etc., called events.

Widgets used to build the GUI interface act as the source of such events. Each PyQt widget, which is derived from QObject class, is designed to emit ‘signal’ in response to one or more events. The signal on its own does not perform any action. Instead, it is ‘connected’ to a ‘slot’. The slot can be any callable Python function.

In PyQt, connection between a signal and a slot can be achieved in different ways. Following are most commonly used techniques −

A more convenient way to call a slot_function, when a signal is emitted by a widget is as follows −

Suppose if a function is to be called when a button is clicked. Here, the clicked signal is to be connected to a callable function. It can be achieved in any of the following two techniques −

or

Example

In the following example, two QPushButton objects (b1 and b2) are added in QDialog window. We want to call functions b1_clicked() and b2_clicked() on clicking b1 and b2 respectively.

When b1 is clicked, the clicked() signal is connected to b1_clicked() function

When b2 is clicked, the clicked() signal is connected to b2_clicked() function

Example

The above code produces the following output −

Output

Qt5 alpha has been released. One of the features which I have been working on is a new syntax for signals and slot.This blog entry will present it.

Here is how you would connect a signal to a slot:

What really happens behind the scenes is that the SIGNAL and SLOT macros will convert their argument to a string. Then QObject::connect() will compare those strings with the introspection data collected by the moc tool.

What's the problem with this syntax?

While working fine in general, we can identify some issues:

  • No compile time check: All the checks are done at run-time by parsing the strings. That means if you do a typo in the name of the signal or the slot, it will compile but the connection will not be made, and you will only notice a warning in the standard output.
  • Since it operates on the strings, the type names of the slot must match exactly the ones of the signal. And they also need to be the same in the header and in the connect statement. This means it won't work nicely if you want to use typedef or namespaces

In the upcoming Qt5, an alternative syntax exist. The former syntax will still work. But you can now also use this new way of connecting your signals to your slots:

Signal Slots Qt Examples

Signal slots qt examplesSignal slot qt example

Which one is the more beautiful is a matter of taste. One can quickly get used to the new syntax.

So apart from the aesthetic point of view, let us go over some of the things that it brings us:

Compile-time checking

You will get a compiler error if you misspelled the signal or slot name, or if the arguments of your slot do not match those from the signal.
This might save you some time while you are doing some re-factoring and change the name or arguments of signals or slots.

Example

An effort has been made, using static_assert to get nice compile errors if the arguments do not match or of you miss a Q_OBJECT

Arguments automatic type conversion

Not only you can now use typedef or namespaces properly, but you can also connect signalsto slots that take arguments of different types if an implicit conversion is possible

In the following example, we connect a signal that has a QString as a parameter to a slot that takes a QVariant. It works because QVariant has an implicit constructor that takes a QString

Signal Slot Qt Example

Connecting to any function

As you might have seen in the previous example, the slot was just declared as publicand not as slot. Qt will indeed call directly the function pointer of the slot, andwill not need moc introspection anymore. (It still needs it for the signal)

But what we can also do is connecting to any function or functor:

This can become very powerful when you associate that with boost or tr1::bind.

C++11 lambda expressions

Signal Slots Qt Example

Everything documented here works with the plain old C++98. But if you use compiler that supportsC++11, I really recommend you to use some of the language's new features.Lambda expressions are supportedby at least MSVC 2010, GCC 4.5, clang 3.1. For the last two, you need to pass -std=c++0x asa flag.

You can then write code like:

This allows you to write asynchronous code very easily.

Update: Also have a look what other C++11 features Qt5 offers.

It is time to try it out. Check out the alpha and start playing. Don't hesistate to report bugs.